

Material Data Sheet 316L / 1,4404 / X2CrNiMo17-12-2

This document provides information and data for parts built using Stainless Steel 316L powder with specific properties (given in the table 'Physical and chemical properties of powder').

Description:

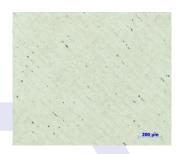
Stainless steel family of materials is widely appreciated for daily use, due their resistance to corrosion and the high possibility of recycling. 316L is a low-carbon stainless steel, its resistance to corrosion is especially good even at high temperature after an appropriate heat treatment.

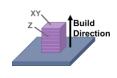
Technical data:

Physical and chemical properties of powder (standard: NF EN 10088-1)

	Elements	Minimun	Maximun
Matrials composition (%weight)	Fe	Balance	
	Cr	16.50	18.50
	Ni	10.00	13.00
	Мо	2.00	2.50
	Mn	-	2.00
	Si	-	1.00
Tap density (g/cc)*		4.8	
Particle size (μm)*		D10	≤ 4,5
		D50	9
		D90	≥ 16

^{*} Data certified by powder provider of AddUp

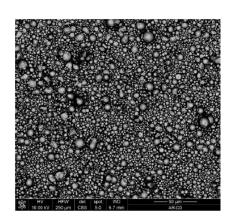

Mechanical Properties:


Mechanical properties of as-build parts (tested at 20°C)

		As-Build *	After Heat treatment
Ultimate tensile strength (MPa /ksi)	(XY)	760 / 110	
	(Z)	690 / 100	
Yield strength, Rp0,2% (MPa /ksi)	(XY)	620 / 89	
	(Z)	540 / 78	
Elongation at break E5d(%)	(XY)	46	
	(Z)	35	
Young's Modulus (GPa)	(XY)	193	
	(Z)	157	
Charpy impact test (KCV J/cm²)	(XY)	57	
	(Z)	45	
Compactness			≥ 99.9%

^{*} Typical value

Microstructure



Microstructure obtained by SLM (after etching)

The microstructure obtained during SLM with 316L is composed of austenitic γ -phase with some oxides of Al, Si, Cr or Mn, giving the mechanical characteristics of the material. The picture shows the regular structure of melting tracks.

Observation by Scanning Electron Microscopy of the powder

